목록MNIST (2)
Joonas' Note
이전 글 - [딥러닝 일지] MNIST Competition 생성 모델 이번에는 MNIST 데이터셋으로 0~9 사이의 숫자를 주면 28x28 크기의 숫자 이미지를 만들어내는 생성 모델을 연습했다. 그 중에서도, 가장 기초적인 형태의 오토 인코더(Auto Encoder) 모델이다. 입력 이미지를 잠재 공간(Latent space)의 어떤 형태로 만드는 Encoder 부분과, 잠재 공간의 값을 다시 재구성하는 Decoder 부분으로 이루어진다. 여기서 잠재 공간의 차원은 2개, 10개 등 상관없고 당연하겠지만 고차원일수록 많은 표현들을 내포할 수 있으므로 좋다. 레이어를 분리해서 학습을 진행하는 경우도 있고 하나로 합쳐서 학습해도 되는데, 중간값을 확인할 수 있도록 분리해서 진행했다. encoded = En..
이전 글 - [딥러닝 일지] 오프라인에서 파이토치 모델 불러오기 MNIST 공부한 CNN을 토대로 참가해볼만한 competition이 없을까 찾아보다가 계속 Ongoing 중인 것을 찾았다. https://www.kaggle.com/competitions/digit-recognizer 데이터가 예상과 다르게 생겨서 당황했었다. jpg나 png 이미지 파일로 있을 줄 알았는데 csv 형태였고, (28, 28) 사이즈의 픽셀을 전부 column으로 들고 있었다. VGG16 실패 이전의 글에서 했던 것 처럼, VGG16 뒤에 FC 레이어를 붙여서 학습해봤는데 18+시간이 걸렸다. 가지고 있던 gpu 할당 시간을 초과해서 학습이 그대로 끝나있었다. VGG16은 (3, 224, 224) 크기의 이미지를 입력으로 ..